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INTRODUCTION

The standard optimum properties l1ike UMP, UMPU, UMPS, UMPI, of the
familiar Student's t-test for testing the significance of the mean of a
univariate normal population with unknown variance against one-sided or
both-sided alternatives are well-known, See, for example, Lehmann (1959).

“In tﬁis paper wn{show Painly without invariance that the t-test continues
to be optimum when norﬁa]ity is replaced by a class of elliptically sym-

metric distributions, thereby establishing optimality robustness of the

t-test. To fix ideas, let x = (xl, cees xn)' - N(u},czln). 02 > 0 unknown,
and consider the problem of testing Hy: u = 0 versus H}: u > 0 or H3: v $ 0.

Define the one-sided t-test and two-sided t-test respectively by

1l ifvs>c
¢,(x) = (1.1)
~ 0 otherwise
l1if |v| > d
6,(x) = (1.2)

0 otherwise

where v = x'1/(|x|| |[1l], l|x]| = (Z?x?)llz, [11] = n /2 1t s proved in
Lehmann and Stein (1948) that
(a) for % <a<l, 9 is UMP for H6 versus H*; however,

(b) no UMP test exists for Ha versus HI for 0 < a < %. On the other hand,

it is trivial that

(c) 9 is UMPI for Ha versus HI while

(d) 45 is both UMPS and UMPI for HG versus HE.

In the sequel, we assume that x has a density of the form

£(x]uy0?) = o alllx - w112 76%) (1.3)




for some q € Q given by

Q = {qlq: [0,®) + [0,=), f q(llfllz)dx = 1}, (1.4)
R" )

In what follows we mostly assume that both 02 and q in (1.3) are un-

known, and consequently define the three classes of densities on R":

Folw) = £F1£(x) = alllx - w1lI®), a € Q) (1.5)

Fl(u) = {f|fe Fo(u), q nonincreasing}

Fz(u) = {f|f e Fl(u), q convex}.

The restrictions of nonincreasingness and convexity imposed on g in (1.5)
above are standard in robustness study (see Kariya (1981)). C(Clearly
Fz(u)C Fl(u) CFO(u) for all real u. Denote the density of x by h(x) and

consider the testing problems

Ho: h e FO(O) versus Kqo: h € Fo(u), y > 0 unknown
Hy he FI(O) versus K, : h e Fl(u), py > 0 unknown

HZ: h e FZ(O) versus K2: h € Fz(u), u # 0 unknown,

Note the very general nature of both null and alternative hypotheses in
(1.6) which are essentially nonparametric. We define by c? the class of

level o tests under Hi’ i=0,1, 2, defined as

€l =1s e C*lEs < a forall feF(0)}, 0<ac<l, (1.7)

where C* denctes the class of all level a tests on R". It then follows

that CS e Ccl‘ < C‘; become F2(0) c Fl( 0(

There are some results in the literature for the testing problems

0) < F,(0).

similar to (1.6). Lehmann and Stein (1949) proved that (e)¢l is UMP for

Sr o B Ve T > A ATRBADALELT L X O ) SO YRR ALY ) £
oo t "‘:“‘ \‘; LG "‘ ! “K.."" o W e :‘ i3 "“u‘l i h.E’“‘""‘e *‘.t"‘. ‘b“"?‘ k) .-3"«")&“,\ A ““:": “:’.4 L
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e w

testing H, versus h s N(u},ozln), u > 0 unknown. Kariya and Eaton (1977)

proved that (f)¢l is UMP for testing Ho versus K, while (g)q)2 is UMPS for

;5. testing HO versus KZ' It is interesting to note the implications of these
U
‘l’
jf results. Clearly (f) is stronger than (e). Moreover, the class of level
) a tests for which ¢, is UMP in (e) is precisely CS and not Cﬁ = N C;(oz)
:" [o} >0
) . . . a; 2y _ (o] 2
oy which is relevant in (b). Here CN(c ) = {¢ € ¢ |E[$|N(O,0 In)] < a}, and
C; is clearly much bigger than Cg. The same is true for the optimality
¢
f° properties in (f) and (g) in that they hold only in Cg. For example, the
€
{ UMP property of ¢, in (f) simply means that for any f(:|u) € Fl(u) and
; o,
.'i
g: E[¢1|f( )] > E{¢|f(-|u)] for all ¢ € Cg (1.8)
.)'t
but it does not mean that for a fixed h(+|p) e Fl(u),¢1 is UMP for testing '
qi
‘& Hl(h): u = 0 versus Kl(h): u>0 (1.9)
A
in the class of level o tests under the fixed h defined as
"
‘.: )
2 C*(h) = (s € C*lE[¢|h(+]0)] < a}. (1.10)
>
L)

It is, therefore,K evident that in the consideration of optimality robustness,
it is essential to clearly specify the class in which optimality holds.

It is the object of this paper to strengthen the results in (f) and
(g). We prove in Section 2 that for each fixed h € Fl(u), 8, is UMP for
M testing .. = 0 versus ;. - 0, i.e. for the problem (1.9), in the class of
conditional level . tests given w = Hx{!z, which s a subclass of C*(h)

given in (1,10) above. Also, the class CB is shown to be the intersection

N of the classes of conditional level o tests over h € FI(O). These two
)
.i’
"
D
> » " - o f o, -r_- -
‘?'\f,‘«‘:‘aft‘:f A Wovh s“ .'pl u"s '*"',.‘c‘:*{)',"'eo“ 'n'\'\- \‘( .f W lu, 0 By , ‘ X . ‘.(c"on !"0 ot \‘. " “\



“y results imply (f). Further, when % <a<l, ¢ is shown to be UMP in

C = " C*(h). In Section 3, it is shown that, for each fixed
a g
heF, (0) ;
Y] heFy(u), ¢, is UMP for testing . = O versus u 0 in the class of con-

ditional similar level o tests satisfying a certain condition. This result

is stronger than (g). Finally, in Section 4, some properties of the t-test

with invariance are pointed out.

The following result, which is very basic and whose proof is omitted,

is useful for our purpose.

PROPOSITION 1. Llet h ¢ Fo(u) be the density of x, where h(x) =

alllx = a1ll%). Then
(1)
(2)

(v,w) is a sufficient statistic for h.

The joint density of (v,w) is given by

wn/2-1

coq(w -2 /Mvyny+ nuz)ro(v)

glv,w; u)

e rolv) = 218(3, 251711 - vB)(n-3)72

" where g = {r(%)}"/r(n/Z) and B(a,b) denotes the Beta function.

" R

2 (3) When v = 0, v and w are independent with density ro(v)rl(w) where i
l"

K riw) = Cown/z-lq(w)-

By (1) of the above proposition, without loss of generality we can re-

strict the class of tests for problems (1.6) to the one based on (v.w). We

denote this class by D in the rest of the paper.

ZUOCOYAOS(
,4,.",{ '&. i, g ,5‘1,
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1
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{
2. ONE-SIDED TESTING PROBLEMS ('
. As mentioned above, in this section we consider the following one- s
sided testing problems: :
A
For a fixed h ¢ Fl(u), p =0 versus u > 0 (2.1) "
; |.l’
! H.: h & Fo(0) versus K,: h € F,{u), u > 0 unknown (2.2) ]
3 0 0 1 1 v
z g
Hl: he FI(O) versus KI: h e Fl(u), pu > 0 unknown. (2.3) _
| o
; Note that the classes of level a tests relevant for these problems are by
) &
! respectively ¢*(h), Cg and C? defined in (1.10) and (1.7). Of course, by e
‘ Proposition 1, any test function ¢(x) belonging to these classes is essen- .
b tially of the form ¢(v,w). Let E;(o) denote the expectation of - with re- ;
. “
spect to the density ro(v) of v given in (2) of Proposition 1 and let ~
! a.a.(w,h) denote "almost all w with respect to the density rl(w) of w" given E,
' =)
. in (4) where " depends on h. Also, let -3
? J
0%(h) = (o e D%{o(v,w) € c*(h)}, h e F(0) (2.4) .
l‘
[ }
. %= (o e 0%olv,w) €y, i=0,1 S
| 1 1 ~y
N ,
p b
where D% denotes the class of level « tests based on (v,w). N
: \
¢ N
! Our first main result is the following. .'::
;
- THEOREM 2.1. For problem (2.1), the test ¢, defined in (1.1) is UMP
) “
' in the class of conditional level o tests A
b
2.5 N
K*(h) = 16 6 (M) EL (s (vaw)] < o a.a.(w,h)l. (2.5)
a ;.(‘
7 A
"
)

()

"’5 L

A A i O] ’ )y Ty O [ OO LA A
g T Ny .ll:‘.";.l.t.."ﬂ) RACHC \."6,".,‘ (R ;‘uﬂ'.“‘b.v‘vl.'..:‘h‘ 2L

)



:':" L ah e e A e e e a aea s o aae aaa e oad is o ol g 0 o w Mo oda 2 ans W W W W W W W mw v e vy
Ay
"!'3,
(Y 7
RIWA,
Vi
e
ﬂ‘z .
Mt Proof. Write h(x) = q(!lx- U}HZ) in Fi(u) and fix o =, - 0.
N From (2) of Proposition 1, the conditional density of v given w is given
o
’}j by g(v,w; ul)/Jllg(v,w; ul)dv. Using the nonincreasing property of q and
il Yl -
%“j and applying the Neyman-Pearson Lemma, it follows that the test with the
o critical region v > c(w) is MP in the class (2.5). But, when u = 0, v and
*ﬁf’ w are independent from (3) of Proposition 1. Therefore, c{w) is indepen-
1"? dent of w. Finally, ro(v) being independent of q, the abcve test coincides
; with 4 and is UMP in (2.5), thus completing the proof.
o
Nt
jyy Remark 2.1. It is important to note that 9 is UMP only in K*(h)
oo
but not in D%(h). In fact, no UMP test exists in D®(h) because an MP test
:ff; for a fixed u = My >0 in general depends on both q and My However, the
_i;_ above result implies (f) as demonstrated below.
N Let
<
S = 0 ), i=0,1 (2.6)
‘. 1 Al
0N heF. (0)
NS 1
\.
A
¢ a a a
LEMMA 2.1. (1) D = Kg. (2) o = K.
\_.‘
~
o a a . . .
! Proof. If ¢ € K., then ¢ € K (h) for all h ¢ FO(O) which implies
1'\_"'.
Eg[¢(v,w)] < a, a.a.{w.h) for any h e FO(O). This immediately gives
] }ﬁj E{s(v,w)|hl < a for all h e FU(O) so that ¢ € DB. To show the converse,
AR -
gta suppose 3 € Dg and there exists hy, & FO(O) such that h aives positive mass
b,
- to the set S = ‘{w > O}Eé[w(v,w)] > a). Clearly $ is independent of any
o
¢
hg % h e FO(O) since, by Proposition 1, the density of v under . = 0 is rO(v).
o
e
:589 independent of h. OQOenote by rl(w) the marginal density ot w under h,,
:"'l‘
which is of the form given in (3) of Proposition 1. Since rl(w) is abso-
: ﬁ' lutely continuous with respect to lLebesque measure, S has a positive lebesque
oy
hq.‘"
R
By

.....
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measure, which in turn irplies that S contains a bounded nonempty open

set A. Now define a density on R" by h. (x) = I (!!XHZ)/{ I (fXI|2)dx
2 ANl R" Al -

‘

where IA(') denctes the indicator function of the set A. Obviously,
h2 € FO(O) and h2 gives the whole mass to the set A. Therefore,
E[bfhz} = E’Eé[@(v,w)J:rz} > a1 where r2(w) is the densi“y of w under hZ’
This implies # ¢ Da, a contradiction. This proves (1),

To prove (2), note that Ug c K; by (1) and the fact that FI(O) < FO(C)
fno
1 A

To show the converse, suppose : € K} which means E[r}hj <« for all h ef

By the completeness of w for the family -’N(O,:Zln)‘f‘2 » 0 whose densities
are included 1n FI(O), we get Eé[:(v,w)] - 4, a.e. (Lebesque), implying

: € Da. This proves (2).

As a by-product, we get the fcollowing interesting facts.

COPOLLAPY 2.1. For problem (2.1}, : is UMP in K? = Ly, Foeoproter

' v s . 1
12.2Y, b TS UMP in DO.

Next we consider problem {2.3). Note that although the al*erna’ ves
€or the twc problems 77.2) and (2.2 are the came "lj, the ! b e tr e

Hy and Hl are different as pointed cut below.

LEMMA 2.2, A S
Proct. “ince {C/p B Ilci Lt g lear trat L= Lo T e
tegt € C{ but € fa, et w1l fr ) e w o] e, a >, ar -
stherwise.  Then for fow - ’ roc, fvon
we et
ri -1 r . '

|
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hand, defining fl(x) =1 {'x )1

B' . B

it is clear that fl(x) € F.(0' but ¢

the proof.

In view of the abcve lemma,

for problem (2.2,

N Py
r ) ¢
a3 Ty v
"“er ¥ * r + v
e,
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A

: Proof. Fix u =u; > 0 and choose f;(x) = q(llx - u11||2

le(f) (say), fy(x) = ql(Hril + 28u)7n /x| + nu%)/J in Lemma 2.3, where
. 0<B<1landJ-= J n q1d|§H + ZBul/nH§||+ nul)d§ > 0. Note that J can
K be written as : :

ql((|l§|| + Bulfn)z + G)df

[N
1l
S
=
>

P T
AN
-

‘ﬂ
|

clfm ql((r + Bulfn)z + 6)rn'1dr ;
0

cljm ql(r2 +68)(r - T)n'ldr < )
T

. 2 2, n-1
since 1 = JR" a (x| ")dx = cljwa(r )r""*dr. Here c, is a constant,

5i T = Bul/ﬁ >0 and § = nu%(l - B) > 0. Clearly, fo(x) € F;(0) because ay (+)

t; is nonincreasing in ”§l| for T > 0. Hence, by Lemma 2.3 with K = J and h.
’ v = 0, the test ¢ with critical region 9
o |
¢ ay(llx= s 11%) 2 a(lxl? + 2suAllx) + md) (2.8)

l is MP for testing H1: h e FI(O) versus h = f?l provided Ef[w] < a for all s
? f e Fl(o). Since 9 is nonincreasing, (2.8) yields the test ) with the A
i critical region v > -, However, by (3) of Proposition 1, the distribution ;
| of v when 1 = 0 is independent of h € FO(O) =) Fl(O). Hence 3 is MP for test- ‘
?? ing H1 versus f = fll and hence UMP against f1 because 2 is independent of :
t A the fixed e 0. Finally, note that P{v > -8} > P{v > 0} = 7 for any ]
B h e Fl(O). Hence the theorem.

Ez Since the UMP test 8 for a fixed a in Fl(u) is independent of qy» we

. immediately have

’ COROLLARY 2,2. For problem (2.3), ¢, is UMP whenever 3 < a < 1.

h) "“‘l " ‘-‘ 't‘ b 'a' ‘t', iy l' S
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a 3. TWO-SIDED TESTING PROBLEMS
0y In this section we deal with the following two testing problems:
IX
ol
3;52:! For a fixed h ¢ Fy(u), u = 0 versus u + O unknown (3.1)
:?J Hy: h e FZ(O) versus K2: h e FZ(“)’ u ¥ 0 unknown. (3.2)
X
:
o Note that the classes of level a test functions relevant for these
W
two problems are respectively C*(h) and C; defined in (1.10) and (1.7).
»5';
ﬁ%: As in Section 2, let
‘—(!,'
s
¥ +
g *(h) = {¢ e D*|o(v,w) & C*(h)}, he F2(0) (3.3)
o 05 = (o 6 D*o(v.w) e C))
23 where 0% is the class of all level o tests based on (v,w). Ffurther, let
‘FB K(v: u,w) = gl(v,w; u)/Jg(v,w: u)dv (2.4
EM
K1
A be the conditional density of v given w where g(v,w: .) is given in (2} of
" Proposition 1. Note that K(v: o,w) = ro(v). For a test function : € {7, let
: (! :
) n(e,(u,w,h)) = E{e(v,w)|K(+: v, w)] = | o(v,wik{v: . ,widv R
e -1
zl« be the conditional power of ¢, given w, which reduces tc the conditigral
st
0
h& size
e
ey 1
— n(¢,(o,w,h)) = EB[:(V,H)] = x(v,w)rofv‘dv iy
ot .
£
'::.' under u = 0. Finally, let KLI(h) and kS' h' be respect ve . the e
o
. conditional unbiased tests of level i i1n ™ and the class ¢ core tr ng’
1
*5< similar tests of level 1 in ['' for h e . defined a5

¥

A AN CIR TP S S
v o, Ny L P A Ay
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Pay
oy
Q
—
=
1"

to & D*(h)|Eglo(v,w)] <o a.a.(w,h), (3.7)
n(¢,(u,w,h)) > a for all u § 0 a.a.(w,h)}
KS*(h) = (¢ ¢ D;]EB[¢(v,w)] =a a.a.(w.h)}.

It is easy to verify that for each fixed h € Fz(“)' the conditional
power n($,(u,w,h)) is continuous a.a.(w,h) at u= 0, which yields the

relation
KU*(h) SKkS*(h) for each fixed h € Folu). (3.8)
We are now ready to state the first main result of this section,

THEQREM 3.1. For oroblem {3.1), the two-sided t-test ¢2 defined in

(1.2) 15 UMP in the class of tests in KS%(h) satisfying

Eglvs(v,w)] =0 a.a.(w,h). (3.9)

!;2)

Proof. Write hix) = q( ;| x - .1

where g is fixed nonincreasing
anc convex, and consider the problem of testing . = 0 versus . = by £ 0 in
the conditional density K(v: .,w) in (3.4). Obviously KS*(h) is the class

o¢ s1ze 1 tests for this problem. Now by the generalized Neyman-Pearson

lemma, a test :* which maximizes the conditional power "(:.(Ll,w,h)) sub-

ect to 1.9 15 given by
Vol ey “l’w\ Clro(v\ + C7vr0(v\
W - (3.10\\
otherwise
where (., ar® . are cunstanrts chosen to satisfy the size . condition
£ coan’ R lstry o of Proposition 1 and the convevit, of

e E T T et iy trat o g equiva ent to




:'%'
B
.. 13
',;'.
-
e
ey
T 1 ifv>b or v<a
¢*(v,w) = (3.11)
y 0 otherwise
1‘;‘1
.;q:\
4&‘ which is clearly independent of M- From (3) of Proposition 1, due to the
' symmetry of ro(v), we get that the constants a and b satisfying E;(¢*) = q
‘ﬁ; and (3.9) must obey the relation -a = b = ¢ (say). Therefore ¢* = dps and
B
:ﬂg hence for any ¢ € KS®(h) satisfying (3.9) and for any u 0, we get
o m(¢,,(u,w,h)) > wl(e,(u,w,h)) a.a.(w,h). . (3.12)
i
|:; L]
;fﬂ Taking expectations with respect to w in both sides of (3.12) proves the
v
theorem.
i
zsf In view of the relation in (3.8) and the fact that 4, € KU*(h), we
D <
e immediately conclude
aa*:‘-
R COROLLARY 3.1. For problem (3.1), ¢, is UMP in the class of tests in
&
N KU*(h) satisfying (3.9).
o
e We next consider problem (3.2). Let
s
v{’.
- k® = 0 k®(n), ks* = N ks%(h) (3.13)
I heF,(0) heF,(0)
2 2
o
R denote respectively the class of conditional unbiased tests of level a in D°
)
*2' and the class of conditional similar tests of level o in D® appropriate for
N this problem. Also let u* and S% be respectively the class of unbiased tests
'\‘:'v
s of level a in D) and the class of similar tests of level a in 05 defined as
i
u* = (¢ & Uy|n(6,(0,h)) < a for any h e 7,(0) (3.14)
'ﬁ \ 1(¢,(u,h)) > a for any h e Fy(u) and u 0}
" -
& = (¢ e Déln(¢,(0,h)) = a for any h € FZ(O)}°

~
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where n(¢,(u,h)) = E[¢(v,w)] is the power function of ¢ under h € Fz(u).

The various relationships amongst these four classes are given below.

LEMMA 3.1. (1) kU® < ®
(2 * =&
(3) K = &,

Proof. (1) follows from the definitions of KU* and 1. (2) follows
from the easily verifiable fact that for any ¢ € Dg and any h € Fz(“)'
n(¢,(u,h)) is continuous in u. To show (3), note that KS® = S% follows
from the definitions. On the other hand, since N(u) s {N(u,cz)lo2 > 0} < Fz(u)
and w is complete for N(0)< FZ(O), it follows that x(¢,(0,h)) =
Eg[E;{¢(v,w)|w}] = a necessarily implies
Egle(vaw)] = a a.a.(w,h) for all h e F,(0),

which shows S® < KS®. This completes the proof of the lemma.
Our main result for problem (3.2) is the following.

THEQREM 3.2. For problem (3.2), the two-sided t-test ¢, is UMP in s¢

i.e., UMP similar,.

Proof. By Theorem 3.1 and (3) of Lemma 3.1, it is enough to show

that any ¢ € S® satisfies (3.9). Assuming h € Fo(u) is the density of

N(ul,ozln), it follows that when u = 0,

Eé[vo(v,w)] = QEB[V] =0 (3.15)

because the derivative of n(¢,(u,h)) at u = 0 is zero and because w is

ZIr)faz >0;. However, by Proposition 1, (3.15)

complete for N(0) : (N(O,c

is true for any h € F,(0). This completes the proof.
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Since ¢, € u*, by (2) of Lemma 3.1 we immediately get

COROLLARY 3.2. For problem (3.2), ¢, is UMP in U%, i.e. UMP unbiased.

2

4. t-TEST WITH INVARIANCE

It is well-known (Kariya (1981)) that when the density of x is given
by (1.3), the one-sided t-test 9 is UMPI for testing u = 0 versus u > 0
for any fixed nonincreasing q and the two-sided t-test ¢2 is UMPI for test-
ing u = 0 versus u ¥ 0 for any fixed nonincreasing and convex 4. The groups
leaving the problems invariant are respectively given by Gl R, x b(n) and
62 = R, x 6(n), where R, = {a > 0}, R, = {a € Rla £ 0}, 6(n) ={r ¢ 0(n)|rl =
and 0(n) is the group of n x n orthogonal matrices. Maximal invariants under
G, and 62 with group actions (y,r)(x) = er,(y,r) € G, i=1,2, are re-
spectively v and |[v|, and the classes of invariant level a tests are respec-

tively given by

J? = {¢ € D“j¢ is based on v only, ES[¢] < al (4.1)
J; = weJ‘l’IM-v) = ¢(v)}. (4.2)

Since the null distribution of v does not depend on q (vide Kariya (1981)),

it follows from (2.4) that

73 eIt =0 <08 xP(h), hefF

2 1 0 1 (0). (4.3)

In fact, the following result holds.

LEMMA 4.1. 11 £ 05

» . p
POUANE 3 2t D P M DR IR | pie!
. K} Eh ‘ " 1} *

AR

1},

i i

-~ s ..

{

P ‘1“;. f 'l ‘ -
¢ Ty BRI 375 MR "‘Q,"."!, L0

1)

R



-t -

16

Proof. Take any test function y(w) £ constant and any ¢(v) €

s

Then the test defined by y(w)el(v) € Dg because Eg[w(w)¢(v)] = w(w)EB[¢(v)] < a.

» However, y(w)e(v) ¢ J?, completing the proof. E,

Consequently, for the one-sided testing problem, the results in

Corollary 2.1 are somewhat stronger than the result that % is UMPI.

v,
An analogous result is obtained below for the two-sided testing problem. s
Recall the definitions of S and Jg given in (3.14) and (4.2) respectively. ’
’ LEMMA 4.2 b

Proof.” Note from Proposition 1 that h € F2(0), v and w are independent !
Y\ W]
. and the densities are respectively aiven by rO(v) and rlkw) where q depends R
p on h. The conditional size condition Eél@(v,w)] = o and the conditional K
' similaritv condition (3.9) can be expressed as ‘
{@(v,w)rokv)dv = a a.a.(w,h € FZ(O)) (4.4) ;
| g

Jv@(v,w)ro(v)dv = 0 a.a.(w,h € FZ(O))' (4.5)

Now take two tests ”1(V) and uZ(V) based on v only which are functionally
1ndependent and satisfy (4.5) with

) B, = Joi(v)ro(v)dv, =1, 2

w' based on

and ;- & - v, - 0. Next choose any two tests .l(w\ and  ,iw. A

w only which satisfy

’ Finally, define the test :* v, ,w) .I(V‘.l(w\ v Sy W Meart, ot .
oL v .
satisfies EOI:'fv.w)j - v and ¥ constant ! dees depend nontravially o ow,
4 This completes the proof L,
L)
1 t ' Lt
flearly ', <X . We will construct a test **/v w € N bhut ¢
C
) .
Y ’
L 0O € v o g Cot ool . P P T R T T L N LIy PP R )
’ P T N SR L( )t\‘l 3 o 8,0t oot ol .' o o4 Aot % = -"
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